
Emulating small scale MANET topologies
Guillaume Valadon∗, Ryuji Wakikawa†, Hiroshi Esaki‡

Graduate School of Information Science and Technology, Tokyo University
Engineering Building 3, 403, Esaki Laboratory

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
∗Email: guedou@hongo.wide.ad.jp

‡Email: hiroshi@wide.ad.jp
†Keio University, Department of Environmental Information,

5322 Endo Fujisawa Kanagawa 252-8520, Japan
Email: ryuji@sfc.wide.ad.jp

Abstract— While network simulators are commonly used to
test MANET routing protocols, no similar tool exist to perform
evaluations of implementations with real hardware. In this
paper, a solution to emulate MANET topologies and to assist
implementations debugging is described. It uses well known
UNIX networking features to enhance and ease interoperability
tests, as well as MANET demonstrations. The system was the
key tool that helps to validate WIDE’s project implementation
of OLSR6.

I. I NTRODUCTION

In research environments, network simulators are commonly
used to design and analyse the performance of new protocols.
For instance, they can reproduce the behaviour of wireless
interfaces, manage and move many nodes, and fake network
topologies. Nevertheless, no such tools are widely available
when performing real life evaluation with regular devices.

During the implementation and testing phase of a MANET
routing protocol, experiments can become a real headache
such as dealing with wireless interfaces. To ease the debugging
part, different physical topologies need to be emulated to
trigger specific protocols behaviour. In OLSR, for example,
the simplest topology leading to TC messages generation is a
chain of nodes paired together.

The system presented in this paper improve the way to
debug and to test protocols. No configuration is performed on
nodes except usual IP addresses configurations and routing
daemons setups. The topology can be entirely controlled
during experiments in order to focus on its results and not on
the network operation.

We have two motivations to develop this emulator. The
first point is to illustrate MANET to students while keeping
the demonstration as real and simple as possible. The second
point is to ease the validation of WIDE’s project OLSR6[2]
implementation. Several bugs were found and corrected using
a step by step approach. The network topology is frozen
when a bug is identified, and change to a new one after the
code correction.

This paper is organised as follow. First, requirements of
small scale MANET testbeds are given. Then in section III
common testbeds setups used in research environment are
described. In section IV and following, a description of the
proposed system is given as well as its usage during OLSR6
debugging. Limitations of the system are then discussed to
conclude on future enhancements.

II. REQUIREMENTS OF SMALL SCALEMANET TESTBEDS

The following list summarise important requirements dis-
cussed later in this section. They are the key elements that led
to the design of the proposed solution.

• IPv6 support
• simple setup and management of nodes
• wire based to get rid of wireless troubles
• automatic topology changes
• traffic monitoring in a single entity

MANET routing protocols are designed to run on top
of wireless technologies, yet during real experiments many
problems often arise while trying to setup wireless interfaces
to use IBSS (ad-hoc) mode. In fact, it can be really difficult
to configure using cards from multiple vendors, or from
different countries. In some situations like interoperability
tests where wireless performance is not really needed, it is
better to rely on communications using wired interfaces.

The testbed should work with off the shelf hardware in
order to keep the overall cost of the platform reasonable and
ease the maintenance. It also permits to validate MANET
routing protocols implementations with real hardware and to
use it for other kind of experiments. In the best case, it should
also work with hardware commonly found in laboratories.

The management of the system must be simple, as
well as the configuration and the distribution of protocol
implementation’s updates. The main focus of the proposed
solution is to make debugging as simple as possible. Using
a centralised architecture, traffic flow between nodes can be
analysed in a single entity which can be the developer’s laptop.

Fig. 1. Emulated network

iptables -P INPUT DROP
iptables -A INPUT -m mac -s 1:2:3:4:5:6 \

-j ACCEPT

Fig. 2. Filters in node C

Topology changes caused by nodes mobility must
be configured easily. The system should manage them
automatically, still giving enough control to the experimenter
if some specific reshape of the network is needed. Moreover,
the system should be able to replay topologies change or
nodes movements. This control over the topology is really
important while trying to hunt and fix precise bugs. After the
correction of bugs, it is essential to go back to the network’s
state that triggered it in order to check the reparation.

III. C OMMON TESTBEDS SETUPS

In research environments, popular MANET testbeds involve
addresses filtering. This section describe two filtering concepts
achieving topology emulations. Following descriptions had
been written with wired link-layer technologies in mind to
simplify testbeds configurations. Regarding filters, without
protocols concern, the optimal design is to deny all addresses
and to selectively allow nodes to talk to each other. Filtersare
smaller and easier to maintain this way.

A. Filtering

1) In node filtering: This solution implies setting up
access lists on every nodes involved in the network in order
to emulate the topology. A good strategy is to use a master
node that will update new rule sets every time a topology
change is needed. Otherwise, nodes with dual IP stacks are
convenient to separate the management plane from the routing
experiment. IPv4 is use to update rules while the protocol
test is done using IPv6. See figures 1 and 2 for an iptables1

example using MAC addresses filtering.

The main drawback of this filtering is that it relies on
operating systems filtering capabilities. Moreover, in some

1command allowing packet filtering on Linux

Fig. 3. Nodes are connected to the emulator using cross cables

in fa 0/1
switchport protected
switchport access vlan2
exit

in fa 0/2
switchport access vlan2
exit

in fa 0/3
switchport protected
switchport access vlan2
exit

Fig. 4. Star topology with Cisco’s IOS

situations, the use of this filter is not realistic. For instance,
during debugging sessions, developers will not agree to grant
root access to their laptop.

2) Centralised filtering:In this environment, all nodes are
connected to a device that emulates network topologies and
performs addresses filtering as in figure 3. Since no specific
configuration are required on nodes, every operating system
can get involved during the experiment.

Most of Ethernet switches can filter both IP packets and
Ethernet frames. However, there is some restrictions as it
is sometime impossible to filter MAC addresses on ports’
egress traffic. As OLSR HELLO messages are transmitted
using Ethernet broadcast, outbound filtering is inefficient.
Moreover, the delay between rules input with switches’
command line interface and their effective use by built-in
the operating system can be quite long and inefficient while
changing topology.

As star topology can easily be created using VLAN features
of switches. Figure 4 shows an example of such setup using a
Catalyst switch from Cisco. Considering OLSR, the emulated
network is too simple as no TC message while be generated.

B. MAC or IP filtering

The biggest requirement for this testbed is to support both
IPv4 and IPv6. Obviously packet filtering involving link layer
addresses meet this requirement. It also gives nodes a true
view of the topology by isolating neighbors traffic.

IP filters leads to more complicated filters as denying on
an IP address basis will work to exchange OLSR message
but will also deny other kind of communications as ICMP or
UDP messages. Attention is needed to carefully setup them.
During debugging sessions, as these filters can not catch non
IP based protocols like ARP, output of network analysis tools
is somehow misleading.

From an IPv6 perspective, it is easier not to filter on IP
addresses. ICMPv6 Neighbour Solicitation messages must
be filtered during OLSR simulations, while allowing Echo
Request ones. Moreover, during IPv6 link layer addresses
resolution, IPv6 can send packet using the unspecified
addresses"::" making filters harder to setup.

Regarding these problems, MAC addresses filtering is an
efficient solution to achieve accurate emulation of physical
topology providing nodes a correct view of the network. As
they only receive packets they need to, the MAC address
filtering is a nice solution for debugging purpose.

IV. PROPOSEDSOLUTION

The topology emulator presented in this paper is designed
to run on hardware commonly found in a lab. The intent is
to provide researchers a cheap solution for protocols testing
and evaluation in small scale testbeds. It supports both IPv4
and IPv6 using link layer topology emulation. As it is node
independent, multiple devices and Operating system can be
involved in the network.

A. System Overview

The proposed topology emulator is based on centralised
filtering and use the following components:

1) addresses and interfaces information discovery
2) Ethernet interfaces bridging
3) topology generator
4) MAC addresses filtering

It runs on a computer where many Ethernet interfaces are
available. Nodes participating in the experiment need to be
plugged with a cross cable to one of the numerous network
interface of the emulator as in figure 3.

In order to setup filters, relations between IP addresses,
MAC addresses and interfaces names need to be established.
Giving an IP class as 192.168.0.0/24 or fec0::0/64, ARP
requests or respectively Neighbours Solicitation requests are
sent to every interfaces plugged to the emulator. As only on
node is plug into an interface, it is straightforward to get a
tuple including MAC and IP addresses as wells as interface
name for each node. Figure 5 shows one example of such

fec0::1 eth0 00:09:6b:a0:a6:71
fec0::2 eth2 00:11:24:79:8e:82
fec0::3 eth3 00:07:40:fb:ad:6a
fec0::4 eth5 00:07:40:02:42:68

Fig. 5. MAC, IP, interfaces relations

Fig. 6. Bus topology emulated with Linux bridging system

relations.

Once these relations are discovered, all nodes are
connected together using an Ethernet bridge. At this stage,
every nodes can talk to each other. For OLSR, every nodes
are neighbors and can receive all HELLO messages generated
in the network. Figure 6 shows the emulated topology
corresponding to figure 3.

The emulated network is then generated based on a random
network topology as seen in figure 7. All communications on
the bridge are first denied, then according to the topology,
Ethernet communications are allowed using MAC based
filters. To ease debugging, a simple mobility model was
implemented. At each iteration of the script, one node is
selected randomly, one of its link will be deleted and a new
one added.

Fig. 7. A topology generated by the emulator

ebtables -A FORWARD -o eth0 \
-s 00:11:24:79:8e:82 \
-j ACCEPT # Allow fec0::2 -> fec0::1

ebtables -A FORWARD -o eth2 \
-s 00:09:6b:a0:a6:71 \
-j ACCEPT # Allow fec0::1 -> fec0::2

Fig. 8. An example of ebtables based MAC filters

B. Implementation

The OLSR6 debugging session was conducted with a
regular IBM X31 laptop using USB Ethernet interfaces.
It runs Debian testing with Linux 2.6.8. The process of
gathering relations between MAC, IP addresses and interfaces
names was automated thanks to scapy[4], a powerful packet
manipulation tool written in python.

The Ethernet bridge is done with thebrconfig command.
A python script is used to emulate the topology, provide
nodes movements and build MAC filters. Figure 8 shows an
example of such filters using theebtablescommand.

This system was designed to work on Linux 2.6 with
its bridging and MAC filtering features. However, as BSD
systems offers similar functionalities, the system shouldwork
with small modifications. At least OpenBSD is expected to
work with pf (Packet Filter) andbrconfig2.

V. OLSR6DEBUGGING FEEDBACK

This section briefly described how the topology emulator
was used during debugging sessions of the OLSR6
implementation in zebra. The main object is to explain
how bugs were found and how these sessions were performed.

At first, all developers’ laptops were plugged to the
emulator using cross cables. All of them had two interfaces:
one to the emulator, and on to the lab’s regular network.
Although its is not mandatory, the later one was used to
access the CVS server and synchronise bug fixes. IPv6 site
local addresses were configured in the emulator network.

During the first topology test, strange entries were detected
in the routing table, as well as weird IP addresses in HELLO
messages. The topology in figure 9 was though frozen and
the bug investigated. It appeared to be an endianess problem
triggered on some architecture. We managed to discover this
issue as many different OS (MAC OS X, *BSD, Linux) can
be used with the topology emulator. After fixing the bug, the
test was start again with the same topology to verify result of
modifications.

Routing table entries were still strange. Some nodes were
unreachable. In order to get a global view of the system,

2Ethernet bridge management command

fec0::1 fec0::2

fec0::4

fec0::3

Fig. 9. First topology used during debugging

fec0::1 fec0::2

fec0::4

fec0::3

Fig. 10. After a movement, the link between fec0::3 and fec0:4 was deleted

Ethereal was launch on the bridge interface of the emulator.It
appeared that no TC messages were sent by MPRs, whereas
they were necessary according to the topology in figure 10.
After this bug was corrected, it appears that TC messages
were not forwarded by MPR.

A new node movement was then launched. This time,
TC messages were corrupted. The neighbours list was still
reflecting the previous network state. The neighbours cache
was not correctly flushed. Applying this basic step by step
method, the implementation was successfully debugged. The
topology was frozen after a bug’s discovery and the new
code tested against the same one until the problem was solved.

When this debugging session was conducted, each developer
could concentrate on bug solving and compile new versions of
the code on their own laptop. Different operating systems and
devices were used at the same time to host the implementation.

If fewer people participate in the experiment, same
operating systems and similar devices should be use to ease
the management of the testbed. It is possible for a developer
to access nodes from the emulator without changing the
topology. Debugging and compilation of the code can be
done on the emulator. Binaries are uploaded to nodes using
commands such asscp. If public keys are properly distributed,
this part is straightforward.

During this experiment, the topology emulator was tested
in a realistic research environment. Whereas no specific node
management component was specifically developed, no prob-
lem were encountered while upgrading or configuring nodes.

To conclude, the following list shows features which were
especially useful during the debugging session:

1) freeze the topology
2) monitor all traffic on the main node
3) compile and upload from a central authority

VI. L IMITATIONS AND WORKAROUNDS

As explained in the previous section, the topology emulator
proved its utility during debugging sessions of OLSR6
implementations. However, this environment is not designed
to conduct realistic performance analysis of protocols.
Bandwidth and delays values are not reasonable to reflect
MANET using wireless links. It is possible to rectify this
problem using netem[1] on Linux to emulate network
properties such a delay, loss or packet rates. Although, this
solution is still not thoroughly validated, it could provide a
good environment to study applications behaviour in OLSR
networks.

In the current version, the topology emulator only provides
symmetric links. If this feature is really required during tests,
it is, of course, possible to change MAC filters by hand. This
can be troublesome while validating OLSR implementations
as there is no convenient way to make links asymmetric.

Using real hardware to conduct experiments can sometimes
be problematic if a lot of nodes are required. On Linux,
emulators and virtual machines using the TUN/TAP3 system
can be used to simulate nodes. As this system provides
userland applications with an Ethernet interface, this virtual
nodes can be used seamlessly with the topology emulator. The
proposed system was tested with five laptop and two QEMU[3]
CPU emulators. User-mode Linux is also a good alternative
for Linux based nodes.

A. Future work

The actual system is somehow limited because it lacks a
good user interface. Actually, it is only possible to generate
the topology and to move one node at each iteration.
A necessary feature to conduct precise experiments is
a better interface to manage links on the fly. During a
simulation, it will help implementors to add and delete links,
move a specific node, and enable support of asymmetric links.

As all traffic go through the topology emulator, it is
possible to analyse OLSR messages and check their validity
according to topology informations. In the network described
by figure 7, this system can verify if HELLO messages send
from node C include B and D as neighbors. It could also
check if node A forwards a valid TC message issued by C.
This is somehow out of the scope of the proposed topology
emulator but this is a good start to add automated OLSR6
conformance and interoperability tests to the Tahi Project[5].

3a virtual network device for userland applications

VII. C ONCLUSION

In this paper, a topology emulator for small scale MANET
is described. It was heavily used to debug WIDE’s project
implementation of OLSR6. A test was conducted using
twelve nodes. Two of them were emulated thanks to QEMU
and others were real devices such a laptops, zaurus, or soekris
boards.

The developed system supports both IPv4 and IPv6, allows
easy setup of MAC addresses filters, manages topologies
automatically, and provides an efficient solution to monitor
nodes activity in a single location. It meet all requirements
for small scale MANET testbed as described in section II.
As expected, all these elements revealed their utility during
experiments.

This work can be considered as a first step to perform
automated interoperability tests of MANET routing protocols.
As the emulator can receive all traffic and knows the topology,
it could easily check if sent packets are valid. On the other
hand, it could also start new thoughts for specific MANET
emulators. The emergence of dedicated hardware to simulate
MANET with realistic performance will really help to validate
implementations as well as evaluating new applications for
this kind of network.

REFERENCES

[1] netem - Network Emulator, http://developer.osdl.org/
shemminger/netem/

[2] R. Wakikawa and A. Tuimonen and T. Clausen,IPv6 Support on Mobile
Ad-hoc Network, http://www.ietf.org/internet-drafts/
draft-wakikawa-manet-ipv6-support-00.txt

[3] QEMU processor emulatorhttp://www.qemu.org
[4] Scapy, http://www.cartel-securite.fr/pbiondi/

projects/scapy/
[5] TAHI Project, http://www.tahi.org/

